MACHIAVELLI is an AI safety benchmark that uses text-based choose-your-own-adventure games to measure the tendency of AI agents to behave unethically in the pursuit of their goals. We discuss what we see as two crucial assumptions behind the MACHIAVELLI benchmark and how these assumptions impact the validity of MACHIAVELLI as a test of ethical behavior of AI agents deployed in the real world. The assumptions we investigate are: - Equivalence of action evaluation and action generation - Independence of ethical judgments from agent capabilities We then propose modifications to the MACHIAVELLI benchmark to empirically study to which extent the assumptions behind MACHIAVELLI hold for AI agents in the real world.
Anonymous: Team members hidden
Roman Leventov, Jason Hoelscher-Obermaier
MAXIAVELLI